# Isomorphism

### From Conservapedia

Given two groups *G*,*G*', an **isomorphism** from *G* to *G*' is a function such that φ is a homomorphism and φ is bijective.

Two groups *G*,*G*' are called **isomorphic** if an isomorphism from *G* to *G*' exists.

Given two groups *G*,*G*', an **isomorphism** from *G* to *G*' is a function such that φ is a homomorphism and φ is bijective.

Two groups *G*,*G*' are called **isomorphic** if an isomorphism from *G* to *G*' exists.