Difference between revisions of "De Moivre's Theorem"

From Conservapedia
Jump to: navigation, search
m (Undo revision 635499 by Q4 (Talk)rv vandal)
Line 1: Line 1:
'''De Moivre’s Theorem''' is a fundamental statement of [[complex analysis]], where ''i'' represents the square root of (-1):
+
#REDIRECT [[ASSFLY JUST LOOVVVVVVVEEEEEEEEESSSSSSSS Z'S MASSIVE COCK]]
 
+
:<math>\left(\cos x+i\sin x\right)^n=\cos\left(nx\right)+i\sin\left(nx\right)\,</math>
+
 
+
==Extension of [[Euler's formula]]==
+
De Moivre's formula is a trivial extension of [[Euler's formula]]:
+
 
+
:<math>e^{ix} = \cos x + i\sin x\,</math>
+
 
+
Because
+
 
+
:<math>\left( e^{ix} \right)^n = e^{inx} \,</math>
+
 
+
Therefore from [[Euler's formula]]:
+
 
+
:<math>e^{i(nx)} = \cos(nx) + i\sin(nx)\,</math>
+
[[category:mathematics]]
+

Revision as of 09:28, 22 June 2010