# Exact differential equation

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

An exact differential equation is a differential equation that can be solved in the following manner.

Suppose you are given an equation of the form:

Failed to parse (lexing error):

or Failed to parse (lexing error):


The solution is φ = constant, where φ is determined by integrating M and N.



Go through the example to find φ by integrating, then check that



and



and that any function φ = some constant, when turned into the corresponding dy/dt, satisfies the original equation. Be sure to emphasize that one must check first that



(That's the condition for "exactness" of the differential form M dt + N dy.)

 or 

where .

To find , first set  and . Then manipulate to get  and . Integrate both sides, compare the results for , and combine the terms into one equation (for terms that show up in both expressions, only write once in the combined expression.) To solve the expression for , plug into the quadratic formula.