# Difference between revisions of "Group (mathematics)"

A group is a mathematical structure consisting of set of elements combined with a binary operator which satisfies four conditions:

1. Closure: applying the binary operator to any two elements of the group produces a result which itself belongs to the group
2. Associativity:  where ,  and  are any element of the group
3. Existence of Identity: there must exist an identity element  such that ; that is, applying the binary operator to some element  and the identity element  leaves  unchanged
4. Existence of Inverse: for each element , there must exist an inverse  such that 

A group with commutative binary operator is known as Abelian.

Example 1: the Klein four group consists of the set of formal symbols  with the relations  All elements of the Klein four group (except the identity 1) have order 2. The Klein four group is isomorphic to  under mod addition.

Example 2: the set of complex numbers {1, -1, i,-i} under multiplication, where i is the square root of -1, the basis of the imaginary numbers. This group is isomorphic to  under mod addition.

Groups are the appropriate mathematical structures for any application involving symmetry.