Difference between revisions of "Talk:Second Law of Thermodynamics"

From Conservapedia
Jump to: navigation, search
(This law and evolution)
(Discuss here before deleting information: The entry explains this well.)
(12 intermediate revisions by 3 users not shown)
Line 94: Line 94:
  
 
Shakespeare is not a scientist.  Science and art are different.  I realize they may not be for creationists, which is shocking and kind of funny.  But they are different in the real world.-'''<font color="#007FFF">Ames</font><font color="#FF0000">G</font>'''<sub>[http://www.conservapedia.com/User_talk:AmesG yo!]</sub> 18:15, 3 April 2007 (EDT)
 
Shakespeare is not a scientist.  Science and art are different.  I realize they may not be for creationists, which is shocking and kind of funny.  But they are different in the real world.-'''<font color="#007FFF">Ames</font><font color="#FF0000">G</font>'''<sub>[http://www.conservapedia.com/User_talk:AmesG yo!]</sub> 18:15, 3 April 2007 (EDT)
 +
 +
== Discuss here before deleting information ==
 +
 +
OK. I deleted the "three types of systems the Second Law can apply to," because it only applies to closed systems. I also deleted the claim that it disproves evolution and relativity, because it doesn't. Evolution is nonsense, but isn't disproved by the Second Law because EARTH IS NOT A CLOSED SYSTEM. As for relativity, the Second Law has no connection to it at all. This article is about one of the key laws of science, and if it's blatant nonsense the credibility of the whole site suffers. --[[User:DonauKind|DonauKind]] 23:47, 16 February 2012 (EST)
 +
 +
:There is no such thing as a perfectly closed system, so your attempt to limit the important Second Law to closed systems is misplaced.  The Second Law is far more meaningful than that.--[[User:Aschlafly|Andy Schlafly]] 23:49, 16 February 2012 (EST)
 +
::Irrelevant. The Second Law only applies to closed systems. If a system isn't closed then energy can be added, thus reducing entropy. That is the MEANING of the Second Law. --[[User:DonauKind|DonauKind]] 23:52, 16 February 2012 (EST)
 +
:::OK, give me a statement of the Second Law that works in an open system. --[[User:DonauKind|DonauKind]] 23:53, 16 February 2012 (EST)
 +
 +
::::Your approach would appear to limit the Second Law to something that doesn't exist.  It's more meaningful than that.  Its entry here explains its insight.--[[User:Aschlafly|Andy Schlafly]] 23:58, 16 February 2012 (EST)
 +
:::::No ''ideal gas'' exists either, yet the Ideal Gas Law only applies to this non-existent hypothetical gas. --[[User:JoshuaB|JoshuaB]] 00:00, 17 February 2012 (EST)
 +
::::::The Second Law isn't an ''insight''. It's a description of energy available for work in a closed system. It doesn't have some deep ''meaning'' that can be applied to whatever you like. The Second Law is an accurate description of entropy (note: ''entropy'', not ''disorder'') in a closed system, and if ever a closed system is found then rest assured that overall entropy will not decrease inside it. But to say it disproves evolution is nonsense, especially when you yourself admit that Earth is NOT a closed system! --[[User:DonauKind|DonauKind]] 00:05, 17 February 2012 (EST)
 +
:::::::And your point is ....?  Attempts to limit the Ideal Gas Law to perfectly ideal gases would be misguided also.--[[User:Aschlafly|Andy Schlafly]] 00:02, 17 February 2012 (EST)
 +
::::::::Uh what? How can the Ideal Gas law be applied to something that isn't an ideal gas? --[[User:DonauKind|DonauKind]] 00:06, 17 February 2012 (EST)
 +
 +
:::::::::The Ideal Gas Law has insights that extend beyond ideal gases.  Ditto for the Second Law with respect to closed systems.--[[User:Aschlafly|Andy Schlafly]] 00:10, 17 February 2012 (EST)
 +
::::::::::OK then, tell me an "insight" that the Second Law can bring to a system that is ''not'' closed. --[[User:DonauKind|DonauKind]] 00:14, 17 February 2012 (EST)
 +
 +
:::::::::::The entry explains this well.--[[User:Aschlafly|Andy Schlafly]] 00:25, 17 February 2012 (EST)

Revision as of 23:25, 16 February 2012

The Second Law of Thermodynamics article was unprotected on 19 March 2007 by Tsumetai (talk)

Wrong! Wrong! Wrong!

I am getting a little tired of the (pardon the immoderate language) stupid edits in relation to the second law of thermodynamics. As has been stated by a number of people on the Talk:Theory of Evolution page, the second law of thermodynamics does not disprove the theory of evolution. You are just making this site look stupid by stating that it does. I see that the person who committed the muddleheaded reversion has now protected the page. Might I respectfully suggest that the protection be removed and some scholarship prevail. --Horace 22:01, 3 March 2007 (EST)

Protection and other issues

The trend towards protecting articles by users in edit conflicts is worrisome. Furthermore, the protected version is simply wrong. One of the Conservapedia Commandments is that everything should be sourced. I therefore would very much like to know if there is any source for the claim that "he Second Law of Thermodynamics states that the entropy of the universe tends towards a maximum" This statement is wrong at multiple levels- the 2nd Law is about closed systems (or can be stated about open systems with a some tweaking of the consequent), it says nothing about the universe. Furthermore, tending towards a maximum doesn't even mean that the entropy levels can't decrease. For example, the sequence, 1,3,2,5,4,7,6,9,8... tends towards infinity but is not an increasing sequence. JoshuaZ 04:05, 4 March 2007 (EST)

Second law also says nothing about an upper bound to the entropy of a system; the entropy of the Universe could increase without limit, in principle, making the 'maximum' part wrong too.
To be fair to Philip, the increase of the Universe's entropy is a tendency, not an absolute. The total entropy of an isolated system can decrease; it's just hugely improbable on the scales we're used to dealing with. Quantum effects can lead to a decrease in entropy; one has to deal with a very small system over short periods of time to actually notice this, however. Arbitrarily large decreases in entropy are also possible, given sufficient time. This is true whether one is discussing the fluctuation theorems of QM, or good old-fashioned classical systems.
But these are not, strictly speaking, parts of the second law. Second law doesn't say anything about tendency. The rest of physics just says that second law is not absolute. So I don't think using the word 'tends' in the definition is very useful.
The main problem with the article is, of course, the part about evolution, which as Horace says is just wrong, and painfully so. It's a seductive argument to the layman; after all, entropy is all about order and disorder, and evolution clearly requires the production of order. Right?
Wrong, of course. The second law of thermodynamics is a statement about thermodynamic quantities; 'order' is not one. One can choose to define the term 'order' in thermodynamic terms, in which case the statement that the Universe must become, on net, more disordered over time is true, for certain definitions. But the price for that is rejecting one's intuitive understanding of what constitutes 'order' and 'disorder,' and going with the maths. By a thermodynamic definition of order, my hot chocolate is self-organizing as we speak. Therein lies the danger of describing esoteric physics in terms which carry the baggage of their lay definition. Better to stick with entropy, and check one's prejudices at the door.
Perhaps the simplest way to illustrate this is with a different statement of the second law; the Clausius statement, which reads:
It is impossible to construct a heat engine which, operating in a cycle, produces no effect other than the transfer of a quantity of heat from a colder to a hotter body.
Now, precisely which part of evolution violates that? This version of the second law makes it abundantly clear that we're talking about a specific, mathematically rigorous statement about heat flow, not some general philosophical statement about order and chaos. Tsumetai 07:51, 4 March 2007 (EST)
Oh, yes, I forgot to weigh in on the page protection issue. Tonya Harding strategy, right?
A while ago, I suggested to ASchlafly that a written policy on when page protection should be used, and for how long it should last would be helpful. Anyone else agree? Tsumetai 07:58, 4 March 2007 (EST)

The following is incorrect

From the article:

"It is impossible for the total entropy of an isolated system to decrease, therefore the universe is becoming more and more disordered. In this way the Second Law of Thermodynamics disproves evolution."

The first sentence is true, but the second is false. Evolution does not cause the total entropy in the universe to decrease, only local variations. By analogy, a fridge does not cool the universe, only a small part of it at the expense of the rest. Please correct this clear error to avoid the increasing levels of criticisms being levelled at this wiki. Nematocyte 07:45, 5 March 2007 (EST)

To add my thoughts on this: there are two errors in this article. First, the second law only applies to isolated systems, not to systems that are merely closed, let alone open. Then it becomes clear that the "disproving" of evolution by referring to the second law is severely flawed. There is nothing against a local decrease in entropy, as long as it is balanced by at least as large an increase elsewhere. Moreover, the assumption that evolution is directly linked to a decrease in thermodynamic entropy is not immediately obvious. I agree with Nematocyte that in its present state, this article will just serve to invite more criticism. PaulB 09:16, 13 March 2007 (EDT)
Strictly speaking, second law applies to all systems; for instance, consider the Clausius statement, which I posted up the page. No mention of an isolated system there. Tsumetai 12:01, 13 March 2007 (EDT)
That not what my stat.mech. text says ;-). Let's put it this way: the entropy formulation only applies to isolated systems. In fact, I think that the heat engine in the Clausius formulation should itself be taken as isolated. If we allow it to be (thermally or otherwise) coupled to anything else than a hot and a cold "temperature bath", I think we could make the heat flow up the temperature gradient, at the expense of course of something happening outside the engine. Of course, these thermal reservoirs are abstractions, etc. etc. Anyway, here as well, either we should take the system (engine) as isolated, or we should take it as the entire universe. Both cases are not going to help disprove evolution at any rate. PaulB 12:24, 13 March 2007 (EDT)
I think even the entropy formulation will work with open systems, so long as one takes care to quantify the entropy flow through the boundary. The requirement then becomes that entropy decrease within the boundary is no greater than the net entropy flow out of the system through the boundary. Tsumetai 12:37, 13 March 2007 (EDT)
I think it's effectively the same as looking at an isolated system made out of two parts, inside and outside, and applying the second law to the total system. But what you propose should indeed work. I hadn't thought of doing it that way. PaulB 13:04, 13 March 2007 (EDT)
Absolutely; you can always expand the boundary of an open system to obtain an isolated one, in principle. But it's very useful to be able to work with open systems, if the boundary terms can be computed, since it allows one to ignore entropy generation in the environment. Tsumetai 13:08, 13 March 2007 (EDT)

Time to unprotect

OK, it's been over a week now, and no one has attempted to defend the inclusion of such rubbish. Might we have the article unprotected so that those of us who actually understand elementary thermodynamics can fix it? Tsumetai 07:50, 12 March 2007 (EDT)

Nothing doing sir, the numbskulls are the experts. Who said Sri Lanka became independent in the 1970s, none other than the owner of this site! Zaheerabbas 02:12, 15 March 2007 (EDT)

Ressurection a violation?

I think we should add a section about the resurrection of Jesus and that it "technically" violates the second law of thermodynamics, but that since it was a miracle, it does not need to adhere to the second law. Thoughts?

...*blinks* Are there sources that are actually saying that? *honestly curious* --Sid 3050
I think the latter part is pretty obvious, and negates the need for the former. Tsumetai 11:58, 13 March 2007 (EDT)
Gonna back Tsumetai up on this one. Also, it's shocking and appalling that this article is protected while containing such tripe in the content of it.--AmesG 12:00, 13 March 2007 (EDT)
Not to mention the fact that in the ten days since criticisms were first raised, no one who supports the article in its current state has bothered to defend it.Tsumetai 12:03, 13 March 2007 (EDT)
Agreed. I'll leave a message on the protecting admin's Talk page, maybe it'll help. Talking on here doesn't seem to have any impact. =/ --Sid 3050 12:05, 13 March 2007 (EDT)

Oh, of course. Many intellectuals here! Long live the stone age numbskull army!!! Zaheerabbas 02:11, 15 March 2007 (EDT)

This law and evolution

Timothy Wallace wrote:

  • Evolutionist theory faces a problem in the second law, since the law is plainly understood to indicate (as does empirical observation) that things tend towards disorder, simplicity, randomness, and disorganization, while the theory insists that precisely the opposite has been taking place since the universe began (assuming it had a beginning).
  • Beginning with the “Big Bang” and the self-formation and expansion of space and matter, the evolutionist scenario declares that every structure, system, and relationship—down to every atom, molecule, and beyond—is the result of a loosely-defined, spontaneous self-assembly process of increasing organization and complexity, and a direct contradiction (i.e., theorized violation) of the second law. [1]

Comments? --Ed Poor 16:24, 3 April 2007 (EDT)

Its a considerable misunderstanding. Points:
  • The second law refers to the flow of heat, it is unclear how exactly that translates into "disorder" and "order" when applied to something like life.
  • The second law refers to closed systems, open systems are a much more complex processes and the "law" does not apply cleanly here. Life and Earth are open systems.
  • Evolution is essentially a favored random walk, these systems are able to produce violations of "disorder" all the time. For example any Monte Carlo method algorithm demonstrates this beautifully, you can reach local "maximum" and avoid "minimums" by using evolutionary algorithms and many other variations on the theme.
  • Complexity theory and Self-organizing systems also routinely violate the maxim that order can not be created from disorder. The sorts of things needed to produce an SOS or complex system are just the kinds of things we find in life.
Life is not a good place to be trying to appeal a mathematical description of heat. Etaroced 16:31, 3 April 2007 (EDT)

Also, applying the second law to evolution reflects a plain misunderstanding. Beings today are not "more perfect" than those that came before. Greater "perfection" may be a violation of the idea of entropy. However, evolved organisms are not more "perfect" than earlier organisms, since Darwin's point is that there is no biological level of "perfection." Evolved organisms don't violate entropy anymore than older organisms (a 20 year old relative to a 10 year old) do!-AmesGyo! 17:02, 3 April 2007 (EDT)

Ames, you're disagreeing with one of the best Renaissance minds, William Shakespeare:
  • "What a piece of work is man! how noble in reason! how infinite in faculty! in form and moving how express and admirable! in action how like an angel! in apprehension how like a god! the beauty of the world, the paragon of animals! ". - (Hamlet, Act II, Scene II).
Now, how does Evolution explain man evolving through an unguided process from one-celled organisms? --Ed Poor 17:56, 3 April 2007 (EDT)

Shakespeare is not a scientist. Science and art are different. I realize they may not be for creationists, which is shocking and kind of funny. But they are different in the real world.-AmesGyo! 18:15, 3 April 2007 (EDT)

Discuss here before deleting information

OK. I deleted the "three types of systems the Second Law can apply to," because it only applies to closed systems. I also deleted the claim that it disproves evolution and relativity, because it doesn't. Evolution is nonsense, but isn't disproved by the Second Law because EARTH IS NOT A CLOSED SYSTEM. As for relativity, the Second Law has no connection to it at all. This article is about one of the key laws of science, and if it's blatant nonsense the credibility of the whole site suffers. --DonauKind 23:47, 16 February 2012 (EST)

There is no such thing as a perfectly closed system, so your attempt to limit the important Second Law to closed systems is misplaced. The Second Law is far more meaningful than that.--Andy Schlafly 23:49, 16 February 2012 (EST)
Irrelevant. The Second Law only applies to closed systems. If a system isn't closed then energy can be added, thus reducing entropy. That is the MEANING of the Second Law. --DonauKind 23:52, 16 February 2012 (EST)
OK, give me a statement of the Second Law that works in an open system. --DonauKind 23:53, 16 February 2012 (EST)
Your approach would appear to limit the Second Law to something that doesn't exist. It's more meaningful than that. Its entry here explains its insight.--Andy Schlafly 23:58, 16 February 2012 (EST)
No ideal gas exists either, yet the Ideal Gas Law only applies to this non-existent hypothetical gas. --JoshuaB 00:00, 17 February 2012 (EST)
The Second Law isn't an insight. It's a description of energy available for work in a closed system. It doesn't have some deep meaning that can be applied to whatever you like. The Second Law is an accurate description of entropy (note: entropy, not disorder) in a closed system, and if ever a closed system is found then rest assured that overall entropy will not decrease inside it. But to say it disproves evolution is nonsense, especially when you yourself admit that Earth is NOT a closed system! --DonauKind 00:05, 17 February 2012 (EST)
And your point is ....? Attempts to limit the Ideal Gas Law to perfectly ideal gases would be misguided also.--Andy Schlafly 00:02, 17 February 2012 (EST)
Uh what? How can the Ideal Gas law be applied to something that isn't an ideal gas? --DonauKind 00:06, 17 February 2012 (EST)
The Ideal Gas Law has insights that extend beyond ideal gases. Ditto for the Second Law with respect to closed systems.--Andy Schlafly 00:10, 17 February 2012 (EST)
OK then, tell me an "insight" that the Second Law can bring to a system that is not closed. --DonauKind 00:14, 17 February 2012 (EST)
The entry explains this well.--Andy Schlafly 00:25, 17 February 2012 (EST)