Talk:Second Law of Thermodynamics

From Conservapedia
This is an old revision of this page, as edited by Karajou (Talk | contribs) at 04:03, June 13, 2012. It may differ significantly from current revision.

Jump to: navigation, search

The Second Law of Thermodynamics article was unprotected on 19 March 2007 by Tsumetai (talk)

Protection and other issues

The trend towards protecting articles by users in edit conflicts is worrisome. Furthermore, the protected version is simply wrong. One of the Conservapedia Commandments is that everything should be sourced. I therefore would very much like to know if there is any source for the claim that "he Second Law of Thermodynamics states that the entropy of the universe tends towards a maximum" This statement is wrong at multiple levels- the 2nd Law is about closed systems (or can be stated about open systems with a some tweaking of the consequent), it says nothing about the universe. Furthermore, tending towards a maximum doesn't even mean that the entropy levels can't decrease. For example, the sequence, 1,3,2,5,4,7,6,9,8... tends towards infinity but is not an increasing sequence. JoshuaZ 04:05, 4 March 2007 (EST)

Second law also says nothing about an upper bound to the entropy of a system; the entropy of the Universe could increase without limit, in principle, making the 'maximum' part wrong too.
To be fair to Philip, the increase of the Universe's entropy is a tendency, not an absolute. The total entropy of an isolated system can decrease; it's just hugely improbable on the scales we're used to dealing with. Quantum effects can lead to a decrease in entropy; one has to deal with a very small system over short periods of time to actually notice this, however. Arbitrarily large decreases in entropy are also possible, given sufficient time. This is true whether one is discussing the fluctuation theorems of QM, or good old-fashioned classical systems.
But these are not, strictly speaking, parts of the second law. Second law doesn't say anything about tendency. The rest of physics just says that second law is not absolute. So I don't think using the word 'tends' in the definition is very useful.
The main problem with the article is, of course, the part about evolution, which as Horace says is just wrong, and painfully so. It's a seductive argument to the layman; after all, entropy is all about order and disorder, and evolution clearly requires the production of order. Right?
Wrong, of course. The second law of thermodynamics is a statement about thermodynamic quantities; 'order' is not one. One can choose to define the term 'order' in thermodynamic terms, in which case the statement that the Universe must become, on net, more disordered over time is true, for certain definitions. But the price for that is rejecting one's intuitive understanding of what constitutes 'order' and 'disorder,' and going with the maths. By a thermodynamic definition of order, my hot chocolate is self-organizing as we speak. Therein lies the danger of describing esoteric physics in terms which carry the baggage of their lay definition. Better to stick with entropy, and check one's prejudices at the door.
Perhaps the simplest way to illustrate this is with a different statement of the second law; the Clausius statement, which reads:
It is impossible to construct a heat engine which, operating in a cycle, produces no effect other than the transfer of a quantity of heat from a colder to a hotter body.
Now, precisely which part of evolution violates that? This version of the second law makes it abundantly clear that we're talking about a specific, mathematically rigorous statement about heat flow, not some general philosophical statement about order and chaos. Tsumetai 07:51, 4 March 2007 (EST)
Oh, yes, I forgot to weigh in on the page protection issue. Tonya Harding strategy, right?
A while ago, I suggested to ASchlafly that a written policy on when page protection should be used, and for how long it should last would be helpful. Anyone else agree? Tsumetai 07:58, 4 March 2007 (EST)

The following is incorrect

From the article:

"It is impossible for the total entropy of an isolated system to decrease, therefore the universe is becoming more and more disordered. In this way the Second Law of Thermodynamics disproves evolution."

The first sentence is true, but the second is false. Evolution does not cause the total entropy in the universe to decrease, only local variations. By analogy, a fridge does not cool the universe, only a small part of it at the expense of the rest. Please correct this clear error to avoid the increasing levels of criticisms being levelled at this wiki. Nematocyte 07:45, 5 March 2007 (EST)

To add my thoughts on this: there are two errors in this article. First, the second law only applies to isolated systems, not to systems that are merely closed, let alone open. Then it becomes clear that the "disproving" of evolution by referring to the second law is severely flawed. There is nothing against a local decrease in entropy, as long as it is balanced by at least as large an increase elsewhere. Moreover, the assumption that evolution is directly linked to a decrease in thermodynamic entropy is not immediately obvious. I agree with Nematocyte that in its present state, this article will just serve to invite more criticism. PaulB 09:16, 13 March 2007 (EDT)
Strictly speaking, second law applies to all systems; for instance, consider the Clausius statement, which I posted up the page. No mention of an isolated system there. Tsumetai 12:01, 13 March 2007 (EDT)
That not what my stat.mech. text says ;-). Let's put it this way: the entropy formulation only applies to isolated systems. In fact, I think that the heat engine in the Clausius formulation should itself be taken as isolated. If we allow it to be (thermally or otherwise) coupled to anything else than a hot and a cold "temperature bath", I think we could make the heat flow up the temperature gradient, at the expense of course of something happening outside the engine. Of course, these thermal reservoirs are abstractions, etc. etc. Anyway, here as well, either we should take the system (engine) as isolated, or we should take it as the entire universe. Both cases are not going to help disprove evolution at any rate. PaulB 12:24, 13 March 2007 (EDT)
I think even the entropy formulation will work with open systems, so long as one takes care to quantify the entropy flow through the boundary. The requirement then becomes that entropy decrease within the boundary is no greater than the net entropy flow out of the system through the boundary. Tsumetai 12:37, 13 March 2007 (EDT)
I think it's effectively the same as looking at an isolated system made out of two parts, inside and outside, and applying the second law to the total system. But what you propose should indeed work. I hadn't thought of doing it that way. PaulB 13:04, 13 March 2007 (EDT)
Absolutely; you can always expand the boundary of an open system to obtain an isolated one, in principle. But it's very useful to be able to work with open systems, if the boundary terms can be computed, since it allows one to ignore entropy generation in the environment. Tsumetai 13:08, 13 March 2007 (EDT)

Time to unprotect

OK, it's been over a week now, and no one has attempted to defend the inclusion of such rubbish. Might we have the article unprotected so that those of us who actually understand elementary thermodynamics can fix it? Tsumetai 07:50, 12 March 2007 (EDT)

Nothing doing sir, the numbskulls are the experts. Who said Sri Lanka became independent in the 1970s, none other than the owner of this site! Zaheerabbas 02:12, 15 March 2007 (EDT)

Ressurection a violation?

I think we should add a section about the resurrection of Jesus and that it "technically" violates the second law of thermodynamics, but that since it was a miracle, it does not need to adhere to the second law. Thoughts?

...*blinks* Are there sources that are actually saying that? *honestly curious* --Sid 3050
I think the latter part is pretty obvious, and negates the need for the former. Tsumetai 11:58, 13 March 2007 (EDT)
Gonna back Tsumetai up on this one. Also, it's shocking and appalling that this article is protected while containing such tripe in the content of it.--AmesG 12:00, 13 March 2007 (EDT)
Not to mention the fact that in the ten days since criticisms were first raised, no one who supports the article in its current state has bothered to defend it.Tsumetai 12:03, 13 March 2007 (EDT)
Agreed. I'll leave a message on the protecting admin's Talk page, maybe it'll help. Talking on here doesn't seem to have any impact. =/ --Sid 3050 12:05, 13 March 2007 (EDT)

Oh, of course. Many intellectuals here! Long live the stone age numbskull army!!! Zaheerabbas 02:11, 15 March 2007 (EDT)

This law and evolution

Timothy Wallace wrote:

  • Evolutionist theory faces a problem in the second law, since the law is plainly understood to indicate (as does empirical observation) that things tend towards disorder, simplicity, randomness, and disorganization, while the theory insists that precisely the opposite has been taking place since the universe began (assuming it had a beginning).
  • Beginning with the “Big Bang” and the self-formation and expansion of space and matter, the evolutionist scenario declares that every structure, system, and relationship—down to every atom, molecule, and beyond—is the result of a loosely-defined, spontaneous self-assembly process of increasing organization and complexity, and a direct contradiction (i.e., theorized violation) of the second law. [1]

Comments? --Ed Poor 16:24, 3 April 2007 (EDT)

Its a considerable misunderstanding. Points:
  • The second law refers to the flow of heat, it is unclear how exactly that translates into "disorder" and "order" when applied to something like life.
  • The second law refers to closed systems, open systems are a much more complex processes and the "law" does not apply cleanly here. Life and Earth are open systems.
  • Evolution is essentially a favored random walk, these systems are able to produce violations of "disorder" all the time. For example any Monte Carlo method algorithm demonstrates this beautifully, you can reach local "maximum" and avoid "minimums" by using evolutionary algorithms and many other variations on the theme.
  • Complexity theory and Self-organizing systems also routinely violate the maxim that order can not be created from disorder. The sorts of things needed to produce an SOS or complex system are just the kinds of things we find in life.
Life is not a good place to be trying to appeal a mathematical description of heat. Etaroced 16:31, 3 April 2007 (EDT)

Also, applying the second law to evolution reflects a plain misunderstanding. Beings today are not "more perfect" than those that came before. Greater "perfection" may be a violation of the idea of entropy. However, evolved organisms are not more "perfect" than earlier organisms, since Darwin's point is that there is no biological level of "perfection." Evolved organisms don't violate entropy anymore than older organisms (a 20 year old relative to a 10 year old) do!-AmesGyo! 17:02, 3 April 2007 (EDT)

Ames, you're disagreeing with one of the best Renaissance minds, William Shakespeare:
  • "What a piece of work is man! how noble in reason! how infinite in faculty! in form and moving how express and admirable! in action how like an angel! in apprehension how like a god! the beauty of the world, the paragon of animals! ". - (Hamlet, Act II, Scene II).
Now, how does Evolution explain man evolving through an unguided process from one-celled organisms? --Ed Poor 17:56, 3 April 2007 (EDT)

Shakespeare is not a scientist. Science and art are different. I realize they may not be for creationists, which is shocking and kind of funny. But they are different in the real world.-AmesGyo! 18:15, 3 April 2007 (EDT)

Discuss here before deleting information

OK. I deleted the "three types of systems the Second Law can apply to," because it only applies to closed systems. I also deleted the claim that it disproves evolution and relativity, because it doesn't. Evolution is nonsense, but isn't disproved by the Second Law because EARTH IS NOT A CLOSED SYSTEM. As for relativity, the Second Law has no connection to it at all. This article is about one of the key laws of science, and if it's blatant nonsense the credibility of the whole site suffers. --DonauKind 23:47, 16 February 2012 (EST)

There is no such thing as a perfectly closed system, so your attempt to limit the important Second Law to closed systems is misplaced. The Second Law is far more meaningful than that.--Andy Schlafly 23:49, 16 February 2012 (EST)
Irrelevant. The Second Law only applies to closed systems. If a system isn't closed then energy can be added, thus reducing entropy. That is the MEANING of the Second Law. --DonauKind 23:52, 16 February 2012 (EST)
OK, give me a statement of the Second Law that works in an open system. --DonauKind 23:53, 16 February 2012 (EST)
Your approach would appear to limit the Second Law to something that doesn't exist. It's more meaningful than that. Its entry here explains its insight.--Andy Schlafly 23:58, 16 February 2012 (EST)
No ideal gas exists either, yet the Ideal Gas Law only applies to this non-existent hypothetical gas. --JoshuaB 00:00, 17 February 2012 (EST)
The Second Law isn't an insight. It's a description of energy available for work in a closed system. It doesn't have some deep meaning that can be applied to whatever you like. The Second Law is an accurate description of entropy (note: entropy, not disorder) in a closed system, and if ever a closed system is found then rest assured that overall entropy will not decrease inside it. But to say it disproves evolution is nonsense, especially when you yourself admit that Earth is NOT a closed system! --DonauKind 00:05, 17 February 2012 (EST)
And your point is ....? Attempts to limit the Ideal Gas Law to perfectly ideal gases would be misguided also.--Andy Schlafly 00:02, 17 February 2012 (EST)
Uh what? How can the Ideal Gas law be applied to something that isn't an ideal gas? --DonauKind 00:06, 17 February 2012 (EST)
The Ideal Gas Law has insights that extend beyond ideal gases. Ditto for the Second Law with respect to closed systems.--Andy Schlafly 00:10, 17 February 2012 (EST)
OK then, tell me an "insight" that the Second Law can bring to a system that is not closed. --DonauKind 00:14, 17 February 2012 (EST)
The entry explains this well.--Andy Schlafly 00:25, 17 February 2012 (EST)

After going back and re-reading the article a few times, I think I know where the confusion lies with some editors. It appears that the article is conflating the thermal definition of entropy with the information theory definition of entropy. This conflation allows the topic of "disorder" to arise. Which has absolutely nothing to do with thermaldynamics. The basic definition of thermal entropy is simply a measure of energy that is unusable to perform work in a system. How a law that breaks down in layman's terms to: "heat won't travel from a cooler body to a hotter body without an additional input of energy" or "no process is possible in which the sole result is the transfer of energy from a cooler to a hotter body" can be used to "disprove" evolution or relativity escapes me. --JoshuaB 02:19, 17 February 2012 (EST)

Perhaps this discussion sheds some light on Aschlafly's misconception of the 2nd law. AugustO 08:27, 17 February 2012 (EST)

The thing is, is that there is a link between thermodynamics and disorder. This is the tour de force result of statistical thermodynamics vs classical thermodynamics - i.e. that the macroscopic quantity which we can measure called "entropy" is related to the number of possible microstates the system can explore. As has been correctly pointed out, the problems start when we directly equate this with "information", or entropy as defined in information theory i.e. "Shannon entropy". This is an analogous concept, based on the fundamental information content of a system. But there isn't an equivalence between information-theoretic entropy and thermodynamic entropy. In the actual physical world, there is no need to directly connect the quantities of "disorder" and "information". This, in part, along with the more important facts that all these things apply to closed systems and the Earth is not a closed system, means that any argument based on how "entropy" disproves evolution due to some information argument is bogus. User:DanPW

Second Law and Evolution

I have removed the statement about the Second Law disproving evolution. It is pretty obvious that Mr. Schlafly does not have a correct understanding of the Second Law of Thermodynamics, and with all due respect, his inaccurate contributions to this article must be removed. From what I understand, Mr. Schlafly's reasoning is based on his belief that evolution is "disorder changing by itself into a more ordered state," which is not true. This has been explained in most of the above sections on this talk page, so I will not rehash arguments. I just expect a better explanation if the article is to be changed back to saying that the Second Law does disprove evolution.

I suspect that the Second Law does not disprove the theory of relativity either, but I have not looked into the arguments for or against this claim so I am leaving this in the article.

--Randall7 01:31, 9 June 2012 (EDT)

Your edit was reverted because the Second Law does ban disorder becoming more orderly, just as it bans heat spontaneously flowing to hotter locations. The theory of evolution is based on the contrary claim that random (disordered) mutations create greater order.--Andy Schlafly 01:35, 9 June 2012 (EDT)
In thermodynamic terms, the concept of "order" is not usually applied to the Second Law except in rigorous terms of "molecular ordering," which you have not made a clear connection to the theory of evolution. Also, you are ignoring the fact that the Second Law only applies to a closed system (and the Earth is not a closed system), which has been explained many times above. --Randall7 02:02, 9 June 2012 (EDT)
And just what is this "closed system" that the 2nd Law here has to be restricted to? Karajou 02:16, 9 June 2012 (EDT)
The standard thermodynamic definition of a closed system is one that cannot exchange mass with its surroundings. But in the context of Mr. Schlafly's assertions about the Second Law and evolution, his misunderstanding about the thermodynamic concept of order is even more significant. --Randall7 02:38, 9 June 2012 (EDT)
And why can't that happen on earth? Karajou 02:42, 9 June 2012 (EDT)
The Earth is actually pretty close to being a closed system, but obviously it is possible for matter to leave or enter the Earth's atmosphere. But the main problem with the Second Law being used as an argument against evolution is the claim that evolution requires "disorder changing by itself into a more ordered state" (this was most recently stated on Talk:Main_Page) and the idea that "disorder" (however that is defined) is always increasing. Mr. Schlafly has not provided any substantial evidence or explanation for this, and that is why I removed the claim about evolution from the article. --Randall7 03:05, 9 June 2012 (EDT)
You and everyone else above kept right on saying that earth is a closed system; now you're changing it to "pretty close to being a closed system"? Have you ever put together logs in a fireplace and watched them burn? Which was more complex: the logs assembled, or the ashes several hours later? Karajou 03:10, 9 June 2012 (EDT)
As I stated in my most recent 2 comments, the fact that the Earth is not a closed system is not as relevant to Mr. Schlafly's Second Law vs. evolution argument as is his concept of order. (And I do believe much of the discussion above on this talk page is not well focused.) I am not seeing the connection between your burning log example and evolution. Please elaborate. --Randall7 03:27, 9 June 2012 (EDT)
Now it's back to being a closed system? Did "pretty close" just disappear? Answer the question about the logs. Karajou 03:45, 9 June 2012 (EDT)
The logs are more complex; in the act of burning them, matter goes from an ordered state to a more disordered one, and energy is given off. Are you going to elaborate on how this relates to evolution as Randall asked? CWest 08:28, 9 June 2012 (EDT)
That is correct. Now explain why the 2nd Law only applies to a closed system. Those are your words, Randall7, and I expect you to answer it...not CWest. Karajou 12:41, 9 June 2012 (EDT)
The two statements that make up the foundation of the Second Law of Thermodynamics - the Kelvin-Planck statement and the Clausius statement - both describe systems that exchange heat and/or work with their surroundings, but not mass. But as I said before, my concern is less about the closed system argument and more about the abuse of the concept of "order" to claim that the Second Law disproves evolution. --Randall7 20:37, 9 June 2012 (EDT)

Several more questions, Mr. Randal7, because now you're drifting away from the "closed" system here.

1. Is iron more complex than rust? And when iron does rust, does it constitute an improvement, or a breakdown?
2. What happens to boiling water when you turn off the stove? Does it stay the same, or does it get cooler?
3. Is CWest's statement above correct, in that "matter goes from an ordered state to a more disordered one"? Does that statement apply only to the fireplace? Could it also apply to a freshly-cleaned living room, just prior to adding three eight-year-old spoiled brats with pop guns and a baby sitter unable to control the outcome? Karajou 03:25, 10 June 2012 (EDT)
I feel like this discussion is becoming less productive and more of a waste of time, but I'll answer the questions because I want to see how you relate them to the Second Law of Thermodynamics disproving evolution. (I so far have failed to see the connection.)
  1. Iron is generally less complex than rust. (Although "complex" is not a very precise term.) Iron is a single element, whereas rust can be a number of iron oxide or iron hydroxide compounds. Iron is usually much more homogeneous than rust. When iron rusts it is a chemical and thermodynamic improvement - it would not happen spontaneously if it were not energetically favorable. In practical terms, rusting is not an improvement because pure iron is more useful for structural or electrical applications, but pure iron does not usually stay pure for long because of its propensity to oxidate. This is why iron alloys are much more common.
  2. When the stove is turned off, boiling water cools as heat is transferred from the water to its cooler surroundings. Entropy is generated from this heat transfer.
  3. In the burning log example, it is true that "matter goes from an ordered state to a more disordered one," and there are plenty of other examples where this statement is true. There are also many instances where matter goes from a disordered state to a more ordered one, such as water freezing or magnetization. But in theses cases of matter becoming more ordered, net entropy of the matter and its surroundings will still never decrease. The statement could also apply to a room of spoiled brats, but in this case the term "order" is no longer being used in a thermodynamic or chemical sense.
--Randall7 15:27, 10 June 2012 (EDT)

My answers to Randall7

With regards to the iron, you are wrong. Rust is a breakdown; it is a disintegration of the iron itself. The rust can be stopped; the iron can be prevented from rusting further, but rust in and of itself can never be restored into iron. It goes one-way only. Likewise the water on the stove; take away the heat which makes the water boil, and the water temperature will drop to the lowest level possible, which one can call "room temperature". Likewise the fireplace logs, likewise the living room. One-way only. Complex to simple, order to disorder. It never, ever happens in reverse.

The 2nd Law of thermodynamics is the same way. You can restrict the 2nd Law to heating and/or energy concepts all you want, but the very core of this law is the same thing cited above: order always goes to disorder; complex always goes to simple. The 2nd Law may be about heat, but turn off the fire and what do you get? Water cooling down, heat cooling and dissipating, complex to simple, order to disorder. The fireplace scene has the heat, but the logs always end up as ashes. The ashes never turn back into logs.

And the final answer to the question "what does this have to do with evolution?". It was evolutionists who stated we should accept their scenario as to how life came to be: simple organisms evolved into more and more complex ones over time. Simple to complex; disorder to order. When making scientific investigations the very first step of the scientific method that must be followed is observation; a scientist has to observe what is going on, and every single minute of every day scientists and layman alike are observing the 2nd Law in action; no one can get away from it. Observation proves complex always goes to simple; observation proves order always goes to disorder. Observation, scientific or not, confirms the validity of the 2nd Law. The examples I posted above - the fireplace, the iron, the living room, the stove top - are perfect examples of the 2nd Law in action, closed system or not. It's impossible to go into reverse.

That is why we're going to post the impossibility of evolution on this website, vis-a-vis the 2nd Law. Case closed. Karajou 01:14, 12 June 2012 (EDT)

You make a good point that irreversibility is an unavoidable consequence of the Second Law. There is no such thing as a truly reversible process and all processes generate entropy. But your claim that "order always goes to disorder; complex always goes to simple" is absurd. More ordered/"complex" materials can be formed through work. ("Simple" and "complex" do not have rigorous thermodynamic definitions, by the way.) Otherwise every single ordered object would have to have existed existed exactly as it is since the beginning of time, or have existed in a larger or more ordered form. Organisms gain energy - the capacity do do work - by eating, respiring, photosynthesizing, or otherwise absorbing energy from their surroundings. This allows them to become more ordered or more "complex," but this is not in violation of the the Second Law because during their processes of converting energy and exerting work, net entropy is generated. --Randall7 23:57, 12 June 2012 (EDT)
Randall7, these organisms do take in food, use it as energy, and continue on with their lives, but their status as organisms remains unchanged until they cease the work; when that happens they wither away and die; they decompose, they turn to dust. Complex to simple, order to disorder. Karajou 00:03, 13 June 2012 (EDT)



Andy, how do you explain the growth of a crystal (an ordered arrangement of ions) from a solution (a disordered arrangement), if "the Second Law does ban disorder becoming more orderly", as you say? --FrederickT3 03:39, 9 June 2012 (EDT)
Order is not really increasing when a crystal grows in a solution, or when water changes its phase and becomes ice. If the crystal or ice is melted again, then one back to where it started. This is no increase in order.--Andy Schlafly 19:53, 9 June 2012 (EDT)
Mr. Schlafly, it is clear that your concept of order differs from the thermodynamic concept of order. When water freezes, its entropy decreases and when ice melts, its entropy increases, but during these processes the entropy of the water's surroundings also increase/decrease (such that total net change in entropy is never negative, and in reality is net positive). I would like to hear an explanation of how changes in "order" during evolution relate to the actual Second Law of Thermodynamics. --Randall7 20:37, 9 June 2012 (EDT)
Mr. Schlafly, are you honestly suggesting there is no change in entropy when water melts? --MatthewQ 01:57, 10 June 2012 (EDT)