Difference between revisions of "Talk:Counterexamples to Relativity"

From Conservapedia
Jump to: navigation, search
m (Reverted edits by PhilG (Talk) to last version by Aschlafly)
(Several Clarification/Corrections: new section)
Line 194: Line 194:
  
 
:Frank, your intuition ("seems to me") is wrong here, and the entry explains it clearly.  GPS is a work of engineering and any timing discrepancies between the satellite and ground are obviously better handled directly by synchronization rather than asking a physicist what he thinks of relativity.  Engineers don't even bother taking general relativity courses, let alone try to build a satellite system using them.--[[User:Aschlafly|Andy Schlafly]] 14:44, 6 January 2010 (EST)
 
:Frank, your intuition ("seems to me") is wrong here, and the entry explains it clearly.  GPS is a work of engineering and any timing discrepancies between the satellite and ground are obviously better handled directly by synchronization rather than asking a physicist what he thinks of relativity.  Engineers don't even bother taking general relativity courses, let alone try to build a satellite system using them.--[[User:Aschlafly|Andy Schlafly]] 14:44, 6 January 2010 (EST)
 +
 +
== Several Clarification/Corrections ==
 +
 +
I am new to Conservapedia, so I don't fully understand exactly how this site is structured; in particular who has the ability to edit protected pages.  This page is apparently protected, but in need of dire work even on the formatting/punctuation/style side of things.  I hope someone with the required access to protected pages can incorporate some of these changes.  In any event, here are some things that need to be clarified or corrected:
 +
 +
1.  It is unclear what #6 is referring to by "overall space".  Is this a reference to the flatness problem in cosmology?  If so, that should be made explicit, and the most commonly accepted solution (inflation) should be mentioned for completeness.  If not, the curvature of space locally is clearly demonstrated by the observed phenomenon of gravitational lensing.
 +
 +
2. #7 is just a feature of the incompatibility between general relativity and quantum field theory.  In this sense, general relativity is of course wrong (just as Newtonian mechanics is, for example), because it doesn't apply accurately below distance scales where quantum effects emerge.
 +
 +
3. #8 is not a problem because quantum nonlocality doesn't allow for information transfer.  Hence special relativity is not violated.
 +
 +
4. #10 is not a counterexample because gravitons are not predicted by general relativity.  They are expected to exist and be predicted by a successful ''quantum'' theory of gravity, but general relativity is not such a theory.
 +
 +
5. #11 is not a counterexample to the theory at all.  It may be an argument for why the theory should not be studied, but that doesn't mean it is ''false'', and thus is not a counterexample.
 +
 +
6. #13 is presumably a reference to the horizon problem of cosmology.  This should be stated, and, as for the flatness problem, the theory of cosmological inflation should be mentioned.  (I realize inflation has not been empirically verified, but since the majority of cosmologists believe it is the correct explanation, it deserves a mention in an encyclopedia article.)
 +
 +
7. #14 is again the problem of the incompatibility of general relativity and quantum field theory (namely that QFT is not background-invariant).  This is not a problem with general relativity, other than in the sense that it is only an approximation (like, say, Maxwellian electrodynamics are just an approximation to quantum electrodynamics).
 +
 +
8. #15, aside from the obvious grammatical error (''violated'' instead of the correct ''violate''), is again not a counterexample to general relativity.  General relativity predicts wormholes ''only'' on the assumption that so-called "exotic matter" exists.  This is matter that has net negative mass/energy, and so is predicted not to exist for precisely the reasons listed here (time travel and the like).  But this is not a counterexample to general relativity itself, merely the observation that a mathematically possible solution does not have a physical manifestation.
 +
 +
9. #16 is again a quantum gravity issue.  It is wrong to call black holes "highly ordered (and thus low entropy)", though.  The fact is that science does not yet know how to count black hole microstates, so we don't know whether they are highly ordered or extremely disordered.  But the best explanation seems to be that general relativity and the Second Law together suggest that black holes should have extremely ''high'' entropy, not low entropy.  But again, this is not a counterexample to general relativity per se, since it makes no predictions about what black hole entropy should be.
 +
 +
10. #18 appears to be a restatement of #11, and is thus both redundant, and not a counterexample for the reasons listed discussion #11.
 +
 +
I apologize for the length of this list of edits, but something really must be done to improve the quality of this article.  I hope that someone with the appropriate access sees fit to make the necessary changes soon.

Revision as of 21:10, March 30, 2010

Andy, can you clarify #4 for me? I'm not sure I understand it. JacobB 21:50, 28 November 2009 (EST)

Sure, I welcome discussion of these important points. As I've said, I have an open mind about this and if something is true, then I accept it. But if something is false, I'll criticize it.
The theory of relativity has taught for decades that as the velocity of a mass increases, then its (scalar) relativistic mass increases per the Lorentzian transformation. Now apply a force ORTHOGONAL to the velocity. Does that force encounter the increased mass, as relativity says, or encounter the rest mass, as logic would dictate?--Andy Schlafly 22:02, 28 November 2009 (EST)
Ah, I see what you mean. May I suggest a re-wording? "The logical problem of a force which is applied at a right angle to the velocity of a relativistic mass." I think that might be a little clearer than it is currently stated. Your thoughts? JacobB 22:06, 28 November 2009 (EST)
Please do. Your edits are always welcome, and you've suggested an improvement here. Thank you for making this change.--Andy Schlafly 22:20, 28 November 2009 (EST)
Why would logic dictate that? Mass is a scalar, and a force from any direction should encounter the same increased mass, not different masses from different directions.
I suppose that under Newtonian mechanics, a moving object has a velocity of 0 within the plane perpendicular to its line of motion, and any forces operating in that plane will act on the object as if it is at rest. But that's not what logic dictates, that's what the previous theory dictates.
Essentially your counterexample to relativity is that it makes a prediction that contradicts Newton's laws. This is neithe r a contradiction nor a logical problem, and it is should be edited out.NgSmith
No, it's a logical problem. If you're suggesting that one force can affect the inertial in an entirely independent, orthogonal direction, that's illogical. One thing cannot affect something else that is entirely independent.--Andy Schlafly 15:40, 12 December 2009 (EST)
Why is that illogical? What logical principle does it violate?
See, in relativity, orthogonal doesn't mean independent. In relativity, velocity vectors do not add. In relativity, the effect of a new force is not independent of the object's existing momentum. And there is nothing illogical about that; it's just a new theory that contradicts the intuition from the previous theory.--NgSmith
Ng, something cannot be independent (orthogonal) and yet dependent at the same time. Unfortunately, you're arguing with your own theory at this point. Even most relativity promoters have abandoned the position you take here.--Andy Schlafly 21:37, 12 December 2009 (EST)
It seems that his point is that something can be orthogonal and dependent. I agree: The cross-product of two vectors is orthogonal to both and yet obviously dependent on both. --EvanW 21:41, 12 December 2009 (EST)
OK, good point, an orthogonal vector can be a function of other orthogonal vectors. But that's a bit different from what we're discussing. Here it's an orthogonal force that is not dependent on anything else, and yet Ng says it encounters relativistic mass due to a different orthogonal force.
I think relativists have abandoned Ng's position, so he's really arguing with his own side at this point. As a result, I urge him to reconsider his views with an open mind once he confirms that.--Andy Schlafly 21:59, 12 December 2009 (EST)
First of all, relativity has not "abandoned" the prediction we're talking about. The velocity addition formulas for both parallel and perpendicular velocities have not changed, and they still predict that an orthogonal force will have a harder time accelerating a fast-moving object. Physicists may have changed their informal interpretation of this formula, but not the formula itself, nor its predictions.
Note also that relativity's prediction can't be all that illogical, because this is what we actually observe happening to particles at high speeds. If you think that fast-moving particles commit some terrible offense against basic logic, take it up with God.
There is a very simple way to settle this matter: write an encyclopedia article where the material is properly sourced. If this is indeed some counterexample or logical flaw in relativity, then one can easily find a book or paper exposing that flaw, and cite it.--NgSmith Sun Dec 13 17:55:04 EST 2009
OK, I think I see part of the problem you people are having. The word "independent" has two different meanings. Being linearly independent is a concept from pure mathematics. Being causally independent is an unrelated metaphysical concept. Whether a force pushing on something causes it to move, and by how much, is completely, umm, independent of whether the vectors involved are linearly independent (orthogonal). Please try to be very careful about the meanings of the terms. SaraT 17:00, 13 December 2009 (EST)
I don't think that's the source of our confusion. I think the main problem is that, according to Newtonian mechanics and thus according to our mechanical intuition, orthogonal things tend to operate independently. Not only that, but a force exerted on an object is usually independent of the object's momentum.
In relativity, none of these things are true, due to the fact that velocities no longer add like vectors (and thus acceleration no longer incurs a cumulative change in velocity in the usual way.) This is seen as some sort of logical flaw or paradox simply because it contradicts the deeply ingrained intuition that came from the previous theory.--NgSmith Sun Dec 13 18:10:46 EST 2009
Theories that don't produce anything useful are often a waste of time, or simply false. I realize that liberals tend to downplay accountability -- a conservative insight, but theories should be accountable by what value they yield, particularly when taxpayer dollars are spent (wasted) on the theory.--Andy Schlafly 16:55, 7 January 2010 (EST)

Counterexample 4 (limiting behavior)

For the fourth "counterexample," the author points out that the momentum does not approach the momentum of light as and

Aside from the mathematical sloppiness of taking two independent variables to a limit at the same time, at unspecified rates, these sorts of "discontinuities" can be found in just about any scientific theory. In Newtonian mechanics, for example, take the orbit of a planet as the planet's mass goes to 0. For any nonzero mass the orbit is an ellipse; at m=0 it is suddenly a straight line. Is this a "counterexample" to Newton's laws?

Or in electronics, I=V/R. The limiting case is no voltage, no resistance, no current; but if someone foolishly took V/R as both V and R go to zero, he would get a nonsensical answer. Let them both go at the same rate and you get I=1. Is this a "counterexample" to basic electronics?

Or more to the point, momentum in Newtonian mechanics is , and this also fails to give the momentum of a photon at m=0, v=c. Again, is that a "counterexample" to ? Will we see this entry in a corresponding page of "Counterexamples to Newton's laws?"

But none of these are counterexamples or "discontinuities": they are just a misinterpretation of the formulas. You don't get the momentum of a photon by taking the momentum formula for a mass and setting m=0 and v=c. That's just not what the formula means, or what they are for. This item should also be removed.--NgSmith Tue Dec 15 10:16:21 EST 2009

Counterexample 9 (Jesus action-at-a-distance)

The quoted verse doesn't strongly suggest "action-at-a-distance" in the relativistic sense. Light could travel the distances mentioned in the passage in a fraction of a second, which is well within the precision given in the verse (an hour). The verse and relativity are not in contradiction here. This should be removed.

I have an open mind about it. In the the healing of the centurion's servant, if the Greek is translated as same "moment" then relativity is impossible, but if translated as the same "hour" then there is no conflict with relativity.
But the healing of the centurion's servant is probably not the only place where there is action at a distance in the Bible.--Andy Schlafly 14:52, 5 January 2010 (EST)
Any distance on the earth is less than 20,000km. A force acting with the speed of light takes less than 1/15,000 ≈ 0.0000667 seconds for this distance.
I don't think how eyewitnesses could spot such a short time...
So, there may probably be no other places where action at a distance is described in the Bible.
FrankC aka ComedyFan 16:17, 5 January 2010 (EST)
You make an interesting point, Frank. But according to this site, it takes 1/7.4 seconds for light to circle the globe, which is much longer than your figure.[1] More generally and more importantly, there is the issue of how this action in the Bible isn't light.--Andy Schlafly 19:30, 5 January 2010 (EST)
Indeed, an error in my calculation: 20,000,000m / 300,000,000 m/sec = 1/15 seconds.
Fast enough, still.
Whether the action in the Bible isn't light doesn't matter: it is indistinguishable from an action happening at the speed of light for the witnesses of the time, so it doesn't say anything about the validity of the theory of relativity...
FrankC aka ComedyFan 19:46, 5 January 2010 (EST)
Frank you make an interesting point, and I have an open mind about it. But I'm not entirely convinced. When the woman cured herself of bleeding and Jesus felt power leaving him, that sounds more like heat than light. And for heat to travel virtually instantaneously (or at the speed of light) WOULD violate the theory of relativity.--Andy Schlafly 20:48, 5 January 2010 (EST)
Yes, it would. And it would also violate classical physics, the laws of thermodynamics etc.
But of course a miracle is going to violate the laws of physics. I don't see how this can be cited to discredit one physical theory over another.--NgSmith

I have to respectfully disagree with you on that point, Andy - I'm not sure this action could comment on relativity any more than the sun stopping for Joshua could comment on the Copernican model of the solar system. If God wanted heat/light to travel at some finite speed except in certain instances, how is that different from the sun and moon moving in the sky, except in certain instances? JacobB 21:32, 5 January 2010 (EST)

I have an open mind about this. You make good points, Jacob. But your analogy is not perfect because:
  • the Joshua account might be understood as the perception of the army that they sun did not set until they completed their job, but the healing in the New Testament cannot be explained as mere perception
  • if the Joshua account is taken absolutely literally, Newtonian mechanics does not say it is impossible, while relativity does say action-at-a-distance is impossible

I look forward to our translation work on the Joshua passage (and New Testament passages) to see if that brings forth insights.--Andy Schlafly 22:30, 5 January 2010 (EST)

Your second point is a good one, and I suppose my example wasn't very good. But on a different note, what makes you say that the Joshua account might be understood as only a perception of the army? I think I'm going to go translate that chapeter, I'll be interested to see what Hebrew words are used for that bit. JacobB 22:49, 5 January 2010 (EST)
Shall we look at it next? Joshua 10:11-14, I think.--Andy Schlafly 23:18, 5 January 2010 (EST)

IMO, the discussion is a little bit bizarre: Following David Hume's definition of a miracle as a "a violation of the laws of nature", for evaluating the laws of natures, miracles can't be taken into account.

As I said earlier: we shouldn't try to restrict God with the laws of our logic - or even physics.

FrankC aka ComedyFan 07:27, 6 January 2010 (EST)

Frank, perhaps what you mean is that you don't want the logic of the Bible to be used to evaluate claims by scientists. If so, I completely disagree. And so would Isaac Newton and most great scientists.
As our Conservative Bible Translation project is revealing, Jesus said his works were not miracles, but signs. So any definition of miracle by Hume (who, by the way, leaned toward atheistic rather than Christianity) is not terribly helpful.--Andy Schlafly 08:00, 6 January 2010 (EST)
So, what's the definition of a sign, then? FrankC aka ComedyFan 08:06, 6 January 2010 (EST)
The same as its name suggests: a disclosure of reality, rather than a violation of it.--Andy Schlafly 08:35, 6 January 2010 (EST)


  • I took Hume's definition as I found it on conservapedia's page on miracles.
  • The page on signs doesn't describe Jesu works - perhaps you can fix this
  • If you don't like Hume, what's about Thomas Aquinas:
Now, there are various degrees and orders of these miracles. Indeed, the highest rank among miracles is held by those events in which something is done by God which nature never could do. For example, that two bodies should be coincident; that the sun reverse its course, or stand still; that the sea open up and offer a way through which people may pass. And even among these an order may be observed. For the greater the things that God does are, and the more they are removed from the capacity of nature, the greater the miracle is. Thus, it is more miraculous for the sun to reverse its course than for the sea to be divided.
Then, the second degree among miracles is held by those events in which God does something which nature can do, but not in this order. It is a work of nature for an animal to live, to see, and to walk; but for it to live after death, to see after becoming blind, to walk after paralysis of the limbs, this nature cannot do—but God at times does such works miraculously. Even among this degree of miracles a gradation is evident, according as what is done is more removed from the capacity of nature.
Now, the third degree of miracles occurs when God does what is usually done by the working of nature, but without the operation of the principles of nature. For example, a person may be cured by divine power from a fever which could be cured naturally, and it may rain independently of the working of the principles of nature.
  • Acts 2:43 Everyone was filled with awe, and many wonders and miraculous signs were done by the apostles (KJB) So, we have miraculous signs and wonders
  • John 2:11 This was the first of the miracles Jesus did in Cana of Galilee, and by doing showed his glory, and so his disciples believed in him. (CBP) Changing water into wine is something nature never could do: it's an outright miracle, miraculous sign, whatever...
FrankC aka ComedyFan 09:00, 6 January 2010 (EST)
That's great recitation, Frank, but how about simply applying logic yourself? You're a bright guy, why simply hunt and repeat quotes from others? On this site we encourage thinking in a logical way.--Andy Schlafly 09:21, 6 January 2010 (EST)
I'm trying to use the fact that I'm standing on the shoulder of giants... FrankC aka ComedyFan 09:23, 6 January 2010 (EST)
How about using "the fact" of simple logic and the power of your own mind?--Andy Schlafly 09:27, 6 January 2010 (EST)
To make it as clear as possible in my own words:
  • I won't restrict God by laws which men made or observed. Can I understand God's ways? Can I expect God to act the way I think to be logical? That would be hubris.
  • Testing scientific hypotheses using God's miracles or signs seems to be odd!
But which part of Thomas Aquinas's definition of miraculous events didn't you like? Granted, he had a slightly other view of the capacity of nature than we have today, but his line of reasoning was as valid in the 15th century as it is today! I hoped that his definition would be more helpful than that of David Hume.
FrankC aka ComedyFan 10:41, 6 January 2010 (EST)

A miraculous healing seems to violate the Second Law of Thermodynamics - whether it happens on a distance or not. Does this mean that John 4:46-54 is a counterexample to the laws of thermodynamics, too? PhilG 09:58, 2 February 2010 (EST)

How so? Do you think eating an apple to feel better, or taking an aspirin to alleviate a headache, also violates the Second Law of Thermodynamics?--Andy Schlafly 11:02, 2 February 2010 (EST)

lack of a single useful device

At conservapedia's article on the Global Positioning System, one can read:

These receivers rely on precisely timing signals sent from GPS satellites, with corrections for atmospheric attenuation and relativistic effects.

GPS seems to be a useful device!

FrankC aka ComedyFan 10:53, 6 January 2010 (EST)

Great catch of a misleading statement, Frank! I've corrected it.
Our theory of relativity entry explains how it did not aid the development of GPS. The repeated attempt by relativists to falsely claim credit for GPS reinforces the lack of any legitimate contributions.--Andy Schlafly 11:29, 6 January 2010 (EST)
Well, you are consistent! Just another question: What's about particle accelerators? Generally, the theory of relativity is used to explain why it takes more energy to accelerate an electron from 200,000,000 m/sec to 200,002,000 m/sec than from 2,000 m/sec to 4,000 m/sec.
Have you thought about an explanation for this phenomenon?
Accelerators have applications beyond basic research!
FrankC aka ComedyFan 12:02, 6 January 2010 (EST)
Frank, I have an open mind about this, but I'm not aware of a single benefit from what you describe, nor do you identify one. Do you have an open mind about this?--Andy Schlafly 14:44, 6 January 2010 (EST)
  • Synchrotron radiation is used in medicine
  • So, may I ask again: what your explanation for the phenomenon? I suppose you are aware of the phenomenon I described above?
FrankC aka ComedyFan 15:47, 6 January 2010 (EST)
Frank, inventors and doctors and engineers don't typically even bother learning relativity. Should I repeat that? Complain to engineering departments and medical schools if you think that should change. Nothing useful has even been designed or built using relativity. If you want to look and look and look for a counterexample then you'll be wasting your time. I'm not going to waste mine. This is my final reply on this topic for now. Do something logical, such as editing the Bible, and after benefiting from that experience we can revisit this issue in a month or so.--Andy Schlafly 15:52, 6 January 2010 (EST)
Why does it matter whether the users of the invention learn relativity? Most users of microwaves never learn Maxwell's equations either. That doesn't mean that the laws are irrelevant to the gadget's operation.
Likewise, the engineers who correct the clocks of GPS satellites may not know or care that relativistic effects are behind the clock skew. But that dodges the point that relativistic effects are real, observable, and must be corrected for in several useful inventions.--NgSmith

GPS revisited

The same Tom von Flandern who is quoted in the article on the theory of relativity saying that the GPS programmers "have basically blown off Einstein", wrote in an article in 1998:

So we can state that the clock rate effect predicted by GR is confirmed to within no worse than ±200 / 45,900 or about 0.7%, and that predicted by SR is confirmed to within ±200 / 7,200 or about 3%. This is a very conservative estimate. In an actual study, most of that maximum 200 ns/day variance would almost certainly be accounted for by differences between planned and achieved orbits, and the predictions of relativity would be confirmed with much better precision.

As for how the satellites take into account the relativistic effects, here is his explanation of the so-called factory offset of the atomic clocks for the satellites:

GPS atomic clocks in orbit would run at rates quite different from ground clocks if allowed to do so, and this would complicate usage of the system. So the counter of hyperfine cesium transitions (or the corresponding phenomenon in the case of rubidium atomic clocks) is reset on the ground before launch so that, once in orbit, the clocks will tick off whole seconds at the same average rate as ground clocks. GPS clocks are therefore seen to run slow compared to ground clocks before launch, but run at the same rate as ground clocks after launch when at the correct orbital altitude.

Seems to me that relativistic effects have to be taken into account.

FrankC aka ComedyFan 13:13, 6 January 2010 (EST)

Frank, your intuition ("seems to me") is wrong here, and the entry explains it clearly. GPS is a work of engineering and any timing discrepancies between the satellite and ground are obviously better handled directly by synchronization rather than asking a physicist what he thinks of relativity. Engineers don't even bother taking general relativity courses, let alone try to build a satellite system using them.--Andy Schlafly 14:44, 6 January 2010 (EST)

Several Clarification/Corrections

I am new to Conservapedia, so I don't fully understand exactly how this site is structured; in particular who has the ability to edit protected pages. This page is apparently protected, but in need of dire work even on the formatting/punctuation/style side of things. I hope someone with the required access to protected pages can incorporate some of these changes. In any event, here are some things that need to be clarified or corrected:

1. It is unclear what #6 is referring to by "overall space". Is this a reference to the flatness problem in cosmology? If so, that should be made explicit, and the most commonly accepted solution (inflation) should be mentioned for completeness. If not, the curvature of space locally is clearly demonstrated by the observed phenomenon of gravitational lensing.

2. #7 is just a feature of the incompatibility between general relativity and quantum field theory. In this sense, general relativity is of course wrong (just as Newtonian mechanics is, for example), because it doesn't apply accurately below distance scales where quantum effects emerge.

3. #8 is not a problem because quantum nonlocality doesn't allow for information transfer. Hence special relativity is not violated.

4. #10 is not a counterexample because gravitons are not predicted by general relativity. They are expected to exist and be predicted by a successful quantum theory of gravity, but general relativity is not such a theory.

5. #11 is not a counterexample to the theory at all. It may be an argument for why the theory should not be studied, but that doesn't mean it is false, and thus is not a counterexample.

6. #13 is presumably a reference to the horizon problem of cosmology. This should be stated, and, as for the flatness problem, the theory of cosmological inflation should be mentioned. (I realize inflation has not been empirically verified, but since the majority of cosmologists believe it is the correct explanation, it deserves a mention in an encyclopedia article.)

7. #14 is again the problem of the incompatibility of general relativity and quantum field theory (namely that QFT is not background-invariant). This is not a problem with general relativity, other than in the sense that it is only an approximation (like, say, Maxwellian electrodynamics are just an approximation to quantum electrodynamics).

8. #15, aside from the obvious grammatical error (violated instead of the correct violate), is again not a counterexample to general relativity. General relativity predicts wormholes only on the assumption that so-called "exotic matter" exists. This is matter that has net negative mass/energy, and so is predicted not to exist for precisely the reasons listed here (time travel and the like). But this is not a counterexample to general relativity itself, merely the observation that a mathematically possible solution does not have a physical manifestation.

9. #16 is again a quantum gravity issue. It is wrong to call black holes "highly ordered (and thus low entropy)", though. The fact is that science does not yet know how to count black hole microstates, so we don't know whether they are highly ordered or extremely disordered. But the best explanation seems to be that general relativity and the Second Law together suggest that black holes should have extremely high entropy, not low entropy. But again, this is not a counterexample to general relativity per se, since it makes no predictions about what black hole entropy should be.

10. #18 appears to be a restatement of #11, and is thus both redundant, and not a counterexample for the reasons listed discussion #11.

I apologize for the length of this list of edits, but something really must be done to improve the quality of this article. I hope that someone with the appropriate access sees fit to make the necessary changes soon.