Changes

Jump to: navigation, search

De Moivre's Theorem

466 bytes removed, 14:28, 22 June 2010
Redirected page to [[ASSFLY JUST LOOVVVVVVVEEEEEEEEESSSSSSSS Z'S MASSIVE COCK]]
'''De Moivre’s Theorem''' is a fundamental statement of #REDIRECT [[complex analysis]], where ASSFLY JUST LOOVVVVVVVEEEEEEEEESSSSSSSS Z''i'' represents the square root of (-1): :<math>\left(\cos x+i\sin x\right)^n=\cos\left(nx\right)+i\sin\left(nx\right)\,</math> ==Extension of [[Euler's formula]]==De Moivre's formula is a trivial extension of [[Euler's formula]]: :<math>e^{ix} = \cos x + i\sin x\,</math> Because :<math>\left( e^{ix} \right)^n = e^{inx} \,</math> Therefore from [[Euler's formula]]: :<math>e^{i(nx)} = \cos(nx) + i\sin(nx)\,</math>[[category:mathematicsS MASSIVE COCK]]
63
edits